ar X iv : 0 71 0 . 54 92 v 1 [ m at h . R A ] 2 9 O ct 2 00 7 Koszul Equivalences in A ∞ - Algebras
نویسندگان
چکیده
We prove a version of Koszul duality and the induced derived equivalence for Adams connected A∞-algebras that generalizes the classical Beilinson-Ginzburg-Soergel Koszul duality. As an immediate consequence, we give a version of the Bernšte˘ ın-Gel'fand-Gel'fand correspondence for Adams connected A∞-algebras. We give various applications. For example, a connected graded algebra A is Artin-Schelter regular if and only if its Ext-algebra Ext * A (k, k) is Frobenius. This generalizes a result of Smith in the Koszul case. If A is Koszul and if both A and its Koszul dual A ! are noetherian satisfying a polynomial identity, then A is Gorenstein if and only if A ! is. The last statement implies that a certain Calabi-Yau property is preserved under Koszul duality.
منابع مشابه
ar X iv : 0 71 0 . 14 19 v 1 [ m at h . R A ] 7 O ct 2 00 7 GELFAND - KIRILLOV CONJECTURE FOR SYMPLECTIC REFLECTION ALGEBRAS
We construct functorially a class of algebras using the formalism of double derivations. These algebras extend to higher dimensions Crawley-Boevey and Holland's construction of deformed preprojective algebras and encompass symplectic reflection algebras associated to wreath products. We use this construction to show that the quotient field of a symplectic reflection algebra is " rational " , co...
متن کاملar X iv : m at h / 04 09 16 2 v 1 [ m at h . R A ] 9 S ep 2 00 4 RESOLUTIONS OVER KOSZUL ALGEBRAS
In this paper we show that if Λ = ∐ i≥0 Λ i is a Koszul algebra with Λ 0 isomorphic to a product of copies of a field, then the minimal projective resolution of Λ 0 as a right Λ-module provides all the information necessary to construct both a minimal projective resolution of Λ 0 as a left Λ-module and a minimal projective resolution of Λ as a right module over the enveloping algebra of Λ. The ...
متن کاملar X iv : 0 81 0 . 16 21 v 1 [ m at h . Q A ] 9 O ct 2 00 8 DRINFEL ’ D DOUBLES AND SHAPOVALOV DETERMINANTS
The Shapovalov determinant for a class of pointed Hopf algebras is calculated, including quantized enveloping algebras, Lusztig’s small quantum groups, and quantized Lie superalgebras. Our main tools are root systems, Weyl groupoids, and Lusztig type isomorphisms. We elaborate powerful novel techniques for the algebras at roots of unity, and pass to the general case using a density argument.
متن کاملar X iv : 0 71 0 . 32 32 v 1 [ m at h . R T ] 1 7 O ct 2 00 7 REFLECTION GROUPS AND DIFFERENTIAL FORMS
We study differential forms invariant under a finite reflection group over a field of arbitrary characteristic. In particular, we prove an analogue of Saito’s freeness criterion for invariant differential 1-forms. We also discuss how twisted wedging endows the invariant forms with the structure of a free exterior algebra in certain cases. Some of the results are extended to the case of relative...
متن کاملar X iv : 0 71 0 . 13 81 v 1 [ m at h . FA ] 6 O ct 2 00 7 On the symplectic phase space of KdV
We prove that the Birkhoff map Ω for KdV constructed on H 0 (T) can be interpolated between H 0 (T) and L20(T). In particular, the symplectic phase space H 1/2 0 (T) can be described in terms of Birkhoff coordinates.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007